Supplemental Material for ‘“DepthLap: A General Solution to Out-of-Sample
Nodes for Network Embedding”’

Appendix
Proof of Theorem 1

Lemma 1. Let o(-) be a nonconstant, bounded, and
monotonically-increasing continuous function. For any € >
0 and any function f € C(R®), there exist N € N,
mi,b; € R, and w; € R® (i = 1,---,N), such that
g(x) £ vazl mio (Wlx + b;) satisfies |g(x) — f(x)] < €
forallx € R®.

Remark. 1t is the universal approximation theorem (Cy-
benko 1989; Hornik 1991). It basically suggests that a feed-
forward neural network has the ability to approximate any
continuous function on R?

Lemma 2. For any ¢ > 0 and any f; € C(R®) (i =
1L,...,d) let £(x) = [fi(x),...,fa(x)]T, there exists a
feed-forward neural network g : R — R? that satisfies
lg(x) — f(x)|;2 < eforallx € R®.

Remark. An obvious result of Lemma 1.

Theorem 1. For any € > 0, any undirected graph G =
(V, E) (containing no self-loop, no parallel edge) whose
connected components all have > 3 nodes, and any f : V —
RY, there exists a parameter setting for DepthLap, such that:
For any v* € V, after deleting all information (except G) re-
lated with v*, DepthLap can still recover f(v*)’s value with
error less than e in terms of [?-norm, by treating v* as a new
node and using Algorithm 1 on G.

Proof. 1t is a constructive proof. Remember that h(-) =

[R1(), ..., hs(-)] T, We start by letting s to be the number

of edges in G. Let the kth (1 < k < s) edge be (v, vy).

Now let us specify values of hy(v), af,k) forallv e V:

o hy(vy) =1, hy(vy) = =1, hy(v) =0,v € V\ {vg, vy}
B) _ 400 _ .

® Ay, = Quy
e Forallv € V' \ {vg,v,}, let all)

neighbor of either v, or vy, otherwise let a,gk) =1.

= 0 if v is a direct

Now let us define H(v) = {z € R® : |ht(v)] — v <
|zk] < |hi(V)|+ v,k =1,...,s}, where v > 0is a very
small real constant (7 < %). It can then be verified that
H(v)NH(v') = (0 ifv # v, as long as all connected compo-
nents have > 3 nodes. Hence H (v) can be seen as a unique
“representation” of node v.

Let us move on to specify the neural network, i.e. g(-).
First, notice that it is feasible to construct a function f :
R* — R? such that f(z) = [fi(z),...,fa(z)], fi €
CR*)(@ = 1,...,d), and f(z) = f(v) forall z € H(v)
and all v € V. By Lemma 2, there exists a configuration of
g(-) such that ||g(z) — f(z)||;2 < e forall z € R®, and hence
max,cr(v) [18(2z) — f(v)|;2 < eforallv e V.

To prove the theorem, we now only need to ensure that:
For any v* € V, after removing f(v*), hy(v*) and agfi) (k=
1,...,s), Algorithm 1’s prediction ! of h(v*) still lies in
H (v*). Then g(-) will be able to recover f(v*) with error
less than €. To ensure this, we set n, = wg(and (>
i(% — 1), where wy, is the weight of the kth edge.

w3

Now let us verify that Algorithm 1’s prediction of h(v*)
lies in H (v*). Let the kth edge be (v, v,), and Algorithm
I’s prediction of hy(v*) be z;. Define dist(u,v) to be the
minimum distance (ignoring edge weights) between node u
and node v. It can be verified case by case that (case 2 and
case 3 might be a bit trickier than others, while case 4 is
essentially the same case as case 3):

o Ifv* =v,0orv* =uy, thenl —vy < |z} < L.

If dist(v*, vy) = dist(v*,vy) = 1, then |z}| = 0.

If dist(v*, v,) = 1 and dist(v*,v,) = 2, then |2}| = 0.
If dist(v*, v,) = 2 and dist(v*,v,) = 1, then |z}| = 0.
If dist(v*, vy) > 2 and dist(v*,v,) > 2, then |z}| = 0.

Also note that if v* = v, or v* = vy, then |hy(v*)]
1. Otherwise, |hi(v*)] = 0. So |hy(v*)] — v < |z}]
|he(v*)] + v for k = 1,...,s. As a result, Algorithm 1’s
prediction of h(v*) lies in H (v*).

A

O

Proof of Theorem 2

Theorem 2. Theorem I will not hold if DepthLap does not
model second-order proximity. In other words, there will ex-
ist G = (V,E) and £ : V — R? that DepthLap cannot
model, if (y, is fixed to zero.

Proof. 1t is proved with a counterexample (see Figure 1).
Let us consider a simple graph G = (V. E) with V =

(k)

v*

"Note that during prediction, 1 is used in place of a.y, since

ai’i) is deleted and v* is treated as a new node.

flva) =1

Figure 1: A simple counterexample. Each node decides its
own f(-) by XOR-ing other nodes that are < 2 steps away.

{v1,v2,v3} and E = {(v1,v2), (ve,v3)},and f : V — R
(d = 1 in this counterexample) that satisfies f(v1) =
0, f(va) = f(vs) = 1. If second-order proximity is not
modeled, i.e. (j is fixed to zero (k = 1, ..., s), then it is ob-
vious that Algorithm 1’s prediction of h(v;) and h(vs) will
inevitably be the same. As a result, Algorithm 1 will predict
f(v1) and f(v3) to be the same, which is incorrect. O

References
Cybenko, G. 1989. Approximation by superpositions of a
sigmoidal function. Mathematics of Control, Signals and
Systems.
Hornik, K. 1991. Approximation capabilities of multilayer
feedforward networks. Neural Networks.

