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Appendix
Proof of Theorem 1
Lemma 1. Let σ(·) be a nonconstant, bounded, and
monotonically-increasing continuous function. For any ε >
0 and any function f ∈ C(Rs), there exist N ∈ N,
πi, bi ∈ R, and wi ∈ Rs (i = 1, · · · , N ), such that
g(x) ,

∑N
i=1 πiσ

(
wT
i x+ bi

)
satisfies |g(x) − f(x)| < ε

for all x ∈ Rs.
Remark. It is the universal approximation theorem (Cy-
benko 1989; Hornik 1991). It basically suggests that a feed-
forward neural network has the ability to approximate any
continuous function on Rs

Lemma 2. For any ε > 0 and any fi ∈ C(Rs) (i =
1, . . . , d), let f(x) = [f1(x), . . . , fd(x)]

>, there exists a
feed-forward neural network g : Rs → Rd that satisfies
‖g(x)− f(x)‖l2 < ε for all x ∈ Rs.
Remark. An obvious result of Lemma 1.
Theorem 1. For any ε > 0, any undirected graph G =
(V,E) (containing no self-loop, no parallel edge) whose
connected components all have≥ 3 nodes, and any f : V →
Rd, there exists a parameter setting for DepthLap, such that:
For any v∗ ∈ V , after deleting all information (exceptG) re-
lated with v∗, DepthLap can still recover f(v∗)’s value with
error less than ε in terms of l2-norm, by treating v∗ as a new
node and using Algorithm 1 on G.

Proof. It is a constructive proof. Remember that h(·) =
[h1(·), . . . , hs(·)]>, We start by letting s to be the number
of edges in G. Let the kth (1 ≤ k ≤ s) edge be (vx, vy).
Now let us specify values of hk(v), a

(k)
v for all v ∈ V :

• hk(vx) = 1, hk(vy) = −1, hk(v) = 0, v ∈ V \ {vx, vy}.
• a(k)vx = a

(k)
vy = 1.

• For all v ∈ V \ {vx, vy}, let a(k)v = 0 if v is a direct
neighbor of either vx or vy , otherwise let a(k)v = 1.

Now let us define H(v) , {z ∈ Rs : |hk(v)| − γ <
|zk| < |hk(v)| + γ, k = 1, . . . , s}, where γ > 0 is a very
small real constant (γ � 1

2 ). It can then be verified that
H(v)∩H(v′) = ∅ if v 6= v′, as long as all connected compo-
nents have ≥ 3 nodes. Hence H(v) can be seen as a unique
“representation” of node v.

Let us move on to specify the neural network, i.e. g(·).
First, notice that it is feasible to construct a function f̃ :
Rs → Rd such that f̃(z) = [f̃1(z), . . . , f̃d(z)], f̃i ∈
C(Rs)(i = 1, . . . , d), and f̃(z) = f(v) for all z ∈ H(v)
and all v ∈ V . By Lemma 2, there exists a configuration of
g(·) such that ‖g(z)− f̃(z)‖l2 < ε for all z ∈ Rs, and hence
maxz∈H(v) ‖g(z)− f(v)‖l2 < ε for all v ∈ V .

To prove the theorem, we now only need to ensure that:
For any v∗ ∈ V , after removing f(v∗), hk(v∗) and a(k)v∗ (k =
1, . . . , s), Algorithm 1’s prediction 1 of h(v∗) still lies in
H(v∗). Then g(·) will be able to recover f(v∗) with error
less than ε. To ensure this, we set ηk = wkζk and ζk >
1
w2

k
( 1γ − 1), where wk is the weight of the kth edge.

Now let us verify that Algorithm 1’s prediction of h(v∗)
lies in H(v∗). Let the kth edge be (vx, vy), and Algorithm
1’s prediction of hk(v∗) be z∗k . Define dist(u, v) to be the
minimum distance (ignoring edge weights) between node u
and node v. It can be verified case by case that (case 2 and
case 3 might be a bit trickier than others, while case 4 is
essentially the same case as case 3):

• If v∗ = vx or v∗ = vy , then 1− γ < |z∗k| < 1.
• If dist(v∗, vx) = dist(v∗, vy) = 1, then |z∗k| = 0.
• If dist(v∗, vx) = 1 and dist(v∗, vy) = 2, then |z∗k| = 0.
• If dist(v∗, vx) = 2 and dist(v∗, vy) = 1, then |z∗k| = 0.
• If dist(v∗, vx) ≥ 2 and dist(v∗, vy) ≥ 2, then |z∗k| = 0.

Also note that if v∗ = vx or v∗ = vy , then |hk(v∗)| =
1. Otherwise, |hk(v∗)| = 0. So |hk(v∗)| − γ < |z∗k| <
|hk(v∗)| + γ for k = 1, . . . , s. As a result, Algorithm 1’s
prediction of h(v∗) lies in H(v∗).

Proof of Theorem 2
Theorem 2. Theorem 1 will not hold if DepthLap does not
model second-order proximity. In other words, there will ex-
ist G = (V,E) and f : V → Rd that DepthLap cannot
model, if ζk is fixed to zero.

Proof. It is proved with a counterexample (see Figure 1).
Let us consider a simple graph G = (V,E) with V =

1Note that during prediction, 1 is used in place of a(k)
v∗ , since

a
(k)
v∗ is deleted and v∗ is treated as a new node.



Figure 1: A simple counterexample. Each node decides its
own f(·) by XOR-ing other nodes that are ≤ 2 steps away.

{v1, v2, v3} and E = {(v1, v2), (v2, v3)}, and f : V → R
(d = 1 in this counterexample) that satisfies f(v1) =
0, f(v2) = f(v3) = 1. If second-order proximity is not
modeled, i.e. ζk is fixed to zero (k = 1, . . . , s), then it is ob-
vious that Algorithm 1’s prediction of h(v1) and h(v3) will
inevitably be the same. As a result, Algorithm 1 will predict
f(v1) and f(v3) to be the same, which is incorrect.
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