Learning Disentangled Representations for Recommendation Jianxin Ma^{1,2*}, Chang Zhou^{1*} (co-first), Peng Cui², Hongxia Yang¹, Wenwu Zhu² ¹Alibaba Group ²Tsinghua University

(1) x_u is a list of items clicked by user u. (2) z_u is the user's representation, which is first factorized into K components at the macro level, and further factorized into d dimensions at the micro level. (3) $C = \{c_i\}_i$ are one-hot indicators that tells which intention (out of the K options) is typically related with each item i. p(C) is parameterized as a prototype-based network.

Note: Not all dimensions are human-understandable. Well-trained models can only be identified with the help of a few labels. We encourage future efforts to explore (semi-)supervised methods (Locatello et al., 2019a; 2019b).

	Metrics	
NDCG@100	Recall@20	Recall@50
$3923 (\pm 0.00380) \\3875 (\pm 0.00379) \\9148 (\pm 0.00380)$	$\begin{array}{l} 0.15242 \ (\pm 0.00305) \\ 0.15040 \ (\pm 0.00302) \\ \textbf{0.18616} \ (\pm 0.00317) \end{array}$	$\begin{array}{c} 0.24892 \ (\pm 0.00391) \\ 0.24589 \ (\pm 0.00387) \\ \textbf{0.30256} \ (\pm 0.00397) \end{array}$
$\begin{array}{l} 4487 \ (\pm 0.02738) \\ 7484 \ (\pm 0.02883) \\ \textbf{8895} \ (\pm 0.02739) \end{array}$	$\begin{array}{l} 0.23794 \ (\pm 0.03605) \\ 0.24838 \ (\pm 0.03294) \\ \textbf{0.30951} \ (\pm 0.03808) \end{array}$	$\begin{array}{l} 0.32279\ (\pm 0.04070)\\ 0.35270\ (\pm 0.03927)\\ \textbf{0.41309}\ (\pm 0.04503) \end{array}$
0453 (±0.00799) 0555 (±0.00809) 2740 (±0.00789)	$\begin{array}{l} 0.34382 \ (\pm 0.00961) \\ 0.33960 \ (\pm 0.00919) \\ \textbf{0.36046} \ (\pm 0.00947) \end{array}$	$\begin{array}{l} 0.46781 \ (\pm 0.01032) \\ 0.45825 \ (\pm 0.01039) \\ \textbf{0.49039} \ (\pm 0.01029) \end{array}$
$1900 (\pm 0.00209) \\ 1113 (\pm 0.00212) \\ 2496 (\pm 0.00212) $	0.39169 (±0.00271) 0.38263 (±0.00273) 0.39649 (±0.00271)	0.53054 (±0.00285) 0.51975 (±0.00289) 0.52901 (±0.00284)
7450 (± 0.00095) 5291 (± 0.00094) 7987 (± 0.00096)	$\begin{array}{c} 0.33982 (\pm 0.00123) \\ 0.32792 (\pm 0.00122) \\ \textbf{0.34587} (\pm 0.00124) \end{array}$	$\begin{array}{l} 0.43247 \ (\pm 0.00126) \\ 0.41960 \ (\pm 0.00125) \\ \textbf{0.43478} \ (\pm 0.00125) \end{array}$